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L E m R  TO THE EDITOR 

Non-Abelian pseudopotentials and conservation laws of 
reaction-diffusion equations 

A A Alexeyev and N A Kudryashov 
Departmen1 of Applied Mathematics, Moscow Engineering Physics Instilute, 
31 Kashirskoe Avenue, Moscow 115409, USSR 

Received 17 December 1990 

Abslram. We apply the Wahlquist-Estabrook technique 10 reaction-diffusion equations. A 
representation for non-Abelian pseudopotentials is obtained. An infinite hierarchy of 
consewation laws is derived from these pseudopotentials The class of equations associated 
with such pseudopotentials is determined and examples are presented. 

In the theory of nonlinear heat conduction and gas filtration through a porous medium 
(a review may be found in [I]) the nonlinear evolution equation of the second order: 

U, = ( uyxx + n , u  -a2uz r r , , % f - O  (1) 

arises. Here u(x ,  t )  denotes the temperature or gas density as a function of the time t 
and the space coordinate x. 

By the following transformations 

t +  t / a ,  

U -f ua, f a> 

x + * X I &  
equation (1) is reduced to the canonical form 

U, = (2)- + U - u2. 

Equation (2) is ‘non-integrable’ and cannot be solved by means of the inverse scattering 
transformation. However, it has some particular solutions obtained and studied in [ 11. 

In the present letter an infinite set of non-local conservation laws and two local 
conservation laws associated with them are obtained by employing the approach 
analogous to the method introduced in [2] and used in [3] for integrable equations. 
This approach is based on the existence of pseudopotentials of some kind for 
equation (2). 

Later in this letter a problem on the presence of simplest pseudopotentials is 
considered, and explicit expressions for the pseudopotentials as well as the associated 
non-Abelian Lie algebra are obtained. We then present the derivation of conservation 
laws. The most common class of evolution equations associated with pseudopotentials 
of that special form has been considered and examples of such equations, of interest 
for physical models, are shown. The results and their connections with those presented 
earlier in [2] and [3] are finally discussed. 
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By means’ of the technique presented in [41 and [ 5 ]  the general form of a 
pseudopotential for equation (2) can be found. Here we confine ourselves to so-called 
‘pseudopotentials of the first kind’ according to the classification of [4]. Let us consider 
the pair of equations (vectorial in general) defining the pseudopotential q 

For (3) to be integrable it is sufficient that 

qx, - qrx = 0. (4) 

Assume that u ( x ,  f )  is a solution of (2). Then (4) can be replaced by 

aB a 
au au J U ,  

( u2)xx + U - u 2 )  + [ A ,  B] -- U, -- U, = 0 

where 

J A  aB 
[ A ,  B ]  = B-- A -. 

J q  J 4  

Solving the equations for A and B at the higher-order derivatives in (3) as shown 
in [ 5 ] ,  we get the general form of A and B: 

A = a u + P  

B =  (u’) ,a+u*[P.  a ] +  y 

where a, /3, y are vector-valued functions which depend only on q and satisfy the 
additional conditions 

[a. [ P ,  a11 = 0 

IP, [ P ,  all - a = 0 
(7) 

[ y ,  a ] - a  = B  

[Y ,  PI = 0. 

As shown in [6], relations (7) are solvable only when they are consistent with some 
Lie algebra, where commutators in (7) correspond to multiplication. 

Let [ P ,  a] = fa and y = is accordingly. Then (7) is satisfied identically. Moreover, 
it is clear that the Jacobi identities are also satisfied. Thus, elements {a, P }  form the 
basis of a Lie algebra with multiplication table 

[a, U] = 0 

[ P ,  PI = o  (8) 

[ P ,  a] = fa. 

By definition, this algebra is non-Abelian. Finally, from (6) we have 

ax = au + P  
q, = ( ( u 2 ) , * u 2 ) a + P .  
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Consider the linear pseudopotentials determined by formulae (8) and (9), i.e. take 
a and f l  such that 

A = P ( u ) q  

B =  Q(u, ux)q 

where P and 0 are N x N matrices. Then (2) may be presented in the form of the 
zero-curvature equation 

J J  
- P - - - Q + [ P ,  Q ] = O  
J t  ax 

where [ , ] denotes the matrix commutator. 

as P and Q and 
It is obvious that LI = aq and p = pq, where a, p are matrices of the same dimensions 

rp, 01 = ta ( = * I .  ( 1 1 )  
The matrices P and Q are given by the formulae 

In the case dim a = 2 the matrix equation (11) has the general solution (in the basis 
in which a has Jordan’s normal form) 

0 1  
a=( 0 0  ) p = ( ;  pfJ 

Here C and E are constants (in the following C = 0). 
Let us write down equations (9) in terms of the components of vector q = ( w , ,  w2)T 

The system (13) can be solved consistently for wI and w 2 .  For w2 we have 

w2x = ( E  - 5 b 2  
m2r = ( E  -5)4&. 

w ,  is the solution of the following system of equations 

wlr = E O ,  + uw2 
(14) 

W , ,  = E t W ,  + (( u2), + tu2 )w2 .  

w ~ = ~ x P ( ( E - ~ ( x + @ ) ) .  

W I  = WO+ EW,+EW:+. . . 

The solution for w2 is easily determined within an arbitrary phase factor 

We suppose that 

w2=exp(-5(x+Et)) 
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It follows from (14) that W, is defined by 

(x+@)i  
(W;) ,= W;-l+uexp(-e(x+.$))- 

i !  

i=O,+m w_,=o C = * l .  

In particular, for WO we have 

( W d , = u  exp(-t(x+@)) 

(wo) ,= ( (~ ' ) ,+ tu2 )  exp(- t (x+t t ) )  [ = * I .  

Equations (15) determine two sets of potentials W, for .$=i1 and, generally 
speaking, every potential function corresponds to a particular conservation law 

A l l  P A ~ C P - , ~ + : A ~  I ".., r __nL...t tl.-^- ..,.-ao..-..A:..- t- 11, --- --- 1---1 - ->  - 1 3  .c 
1.11 U"...7l.*LLL.".I ,-,To, CALL&,, L l l U I F  C V " C J ~ U L 1 " L L L ~  L V  ""0 .a,= LI"II- ,"~al  all" a,, "1 

them depend explicitly on the independent variables x and f. The first non-local 
conservation law in every set fits the potential with i = 1. 

We now find a general form of the evolution equation associated with a 
pseudopotential of the type (9) and the Lie algebra determined by (8). 

For this purpose we consider the equations defining the pseudopotential q:  

qx = au + p 

qz = f(x,  t)a + T(x, t )p  

In this case the integrability condition qx, - q,x = 0 will be written as 

a u , + u T [ a , P ] + f [ p , ~ ] - f ~ a - T ~ p = O .  

We assume that 

CP. QI = u a  v =constant. 

Then we have 

au, - vuTa + YJQ - fxa - TJ3 = 0. 

Equating the coefficients at a and b to zero, we get 

U, -f, + vf - YU T = 0 

T, = 0 

OT 

U, -f,+ uf - vuT(t) = 0 

f = f ( x , t ,  U, ux, ..., u n J .  
The following are some equations presented earlier in works of other authors and 

occurring in various physical problems. 
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( a )  An equation analogous to the well known Korteweg-de Vries-Burgers equation 
was considered in [7] in connection with the classification of nonlinear equations of 
the form 

U, =f(u'),, + U,,+ U, 

without an infinite set of local conservation laws. The equation can be represented in 
the form (18) for the following range of parameters 

U = - 1  

T=O 

f =  f (  U'),+ U,. 

(b)  A particular form of the so-called generalized Burgers equation [S, 91 

8 
2 u,=-ttBux-Au"t-u, ,  A 20 

in the case p = a -1 and 

u = -Aa 

-U* 8 Aa8 
f =-+- 

a 2u""--u. 2 

(c) The generalized Fisher equation [lo, 111 

ut +auu, - U,, = Pu(1-  U )  a ,P#O 

2P y = -- 
a 

T =  - ( a 2 + 4 P ) / ( 2 a )  

f = - - u 2 + u x - - u .  a 2P 
2 a 

For each of these equations an infinite set of non-local conservation laws analogous 
to (IS) can be derived by means of the technique presented earlier. 

In the present work we have used a method of pseudopotentials of 'prolonged 
structures' to obtain infinite sets of non-local conservation laws. Moreover, the class 
of evolution equations associated with pseudopotentials analogous to the pseudopoten- 
tials used for equation (2) has been determined. For such equations, sets of non-local 
conservation laws can be obtained. Examples of these 'non-integrable' equations, 
interesting from the viewpoint of physical problems, have also been presented. The 
technique described above is similar to the method proposed in [2] and [3] for integrable 
equations and based on the use of a special type of relations. Such relations arise in 
the theory of pseudospherical surface (PSS), which are by definition one-dimensional 
non-Abelian pseudopotentials of the first kind. We believe the procedure for construct- 
ing non-local conservation laws from non-Abelian pseudopotentials, which is not 
associated with presentation of the differential equation in a form describing a PSS, is 
more straightforward and can be used for 'non-integrable' equations. 
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It is essential to note that we used a two-dimensional pseudopotential of the simplest 
type (13). The one-dimensional equation (14) finally obtained for the pseudopotential 
belongs to the more complicated class of equations with coefficients depending on x 
and f. The problem of finding one-dimensional pseudopotentials leading to (14) is 
very difficult [6] .  

Note that an infinite set of conservation laws results from invariance under the 
transformation 

~ 

P +  P = P +  E l  

I =matrix unit. 

This is so because relations (12) can be written as 

P = ( "  0 *1 U ) + d  

p$eu&pa!en!i& fn,nd previou$!y CRR be "& fer the Ric!&nd 
transformations of (2) and so for other equations converted to the class (18) and 
subsequently considered. For example, equation (4) provides the Backlund transforma- 
tion ( E  = 0) 

u b .  O=o, exp(-C(x+@)) 5 = + 1  

w,  = ( 3 & + ( d ) , )  exp(-&+@)) 

from equation 

into equation (2). 

obtain the exact solutions of equation (2) and equations (6)-(18). 

We are indebted to Professor D A Vasilkov for valuable comments. 

At present we study the question of employing the Backlund transformations to 
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